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Abstract--The two-dimensional strain history on a sheet which is inclined to the principal axes of the strain 
ellipsoid is considered. Even if the strain history in three dimensions is coaxial, the two-dimensional progressive 
deformation on the surface of the sheet is in general of a non-coaxial type. It is shown in this paper that the degree 
and sense of two-dimensional non-coaxiality is governed by the strain path followed during three-dimensional 
coaxial deformation. The general relationship is defined between the gradient of the strain path on the Flinn strain 
ellipsoid diagram and the nature of the two-dimensional strain increments. For most strain paths an asymmetrical 
arrangement of structures in the oblique sheet is to be expected. Hence, en 6chelon folds, transected folds and 
extension veins with curved fibres could be produced during three-dimensional coaxial deformation. Only if the 
strain path is of a rather special type will the deformation be coaxial in a two-dimensional as well as a 
three-dimensional sense. 

INTRODUCTION 

'COAXIAL' and 'non-coaxial' are terms which describe 
the position of the axes of the strain ellipsoid with 
respect to lines defined by material points during pro- 
gressive deformation (Hsu 1966, Elliott 1972, Hobbs et 
al. 1976). A coaxial strain history is one which involves 
the coincidence of the principal axes of strain and the 
same set of material lines throughout the strain history. 
The principal axes of strain rate (incremental strain) and 
finite strain are always parallel during a coaxial strain 
history. In the study of structures whose characteristics 
are determined solely by the state of finite strain, the 
distinction between coaxial and non-coaxial becomes 
irrelevant. However,  many structures and rock fabrics 
appear to inherit some of their features from inter- 
mediate stages in the deformation history and for these 
the presence and nature of the strain non-coaxiality 
becomes important. 

The definition above is a three-dimensional one as it 
refers to the strain ellipsoid. The indications we obtain 
about the nature of the strain history however are very 
often based on two-dimensional observations on planar 
outcrop surfaces, thin sections or geological surfaces. In 
order  to be able to draw three-dimensional conclusions 
from such two-dimensional data we need to investigate 
the behaviour of the strain ellipse of the plane on which 
our observations are made. For instance, does this 
ellipse, referred to below as the sectional strain ellipse, 
experience a two-dimensional coaxial strain history 
when the rock is undergoing a coaxial strain in the 
three-dimensional sense? This paper is concerned with 
questions of this nature and examines the development 
of the sectional strain on a plane inclined to the principal 
axes of the strain ellipsoid during progressive defor- 
mation. The discussion, which is restricted to three- 
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dimensional coaxial strains, allows one to formulate 
rules which apply when the coaxial strain concept is 
extended to consider the strains which develop in an 
oblique planar section. 

The question of the strains which develop on a general 
section through a deforming rock has been considered 
by several authors (e.g. Flinn 1962, Ramsay 1967, 
p. 175, Treagus & Treagus 1981). These authors point 
out that the relationship between the sectional and 
three-dimensional strain can be complex even when the 
latter is of a coaxial type. It will be shown below, 
however, that the non-coaxial character of the sectional 
strain can be readily predicted from the nature of the 
strain path followed during a coaxial strain history. 

The V property 

Fundamental to the discussion of orientation of the 
principal axes of the ellipse produced by sectioning an 
ellipsoid is the V property. This is equivalent to the 2V 
parameter much utilized in optics to determine the 
orientation of ellipses produced by sectioning the optical 
indicatrix ellipsoid. Flinn (1962) has pointed out the 
importance of this parameter  for the strain ellipsoid 
when the principal axes of the sectional strain ellipse are 
to be determined. 

The angle V describes the orientation of the circular 
sections of the ellipsoid with respect to its principal axes. 
The V angle described in the discussion that follows is 
defined as the angle between the A~ axis and the normal 
to the circular section. The V angle defined in this way 
(VA,) is 0 ° for a uniaxial prolate ellipsoid and 90 ° for a 
uniaxial oblate ellipsoid. By considering these end- 
member ellipsoids we can directly anticipate the way the 
V angle controls the orientation of the sectional strain 
ellipse. Any section through a uniaxial prolate ellipsoid 
produces an ellipse whose long axis is the orthogonal 
projection of the AI principal axis of the ellipsoid on the 
section plane. A uniaxial oblate ellipsoid on the other 
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hand always sections to yield an ellipse with a long axis 
parallel to the line of intersection of the section plane 
and the Al~.2 (circular) plane of the strain ellipsoid. In 
other words, if the shape of the ellipsoid changes so that 
V increases, the long axis of the sectional ellipse moves 
away from the projection of A~ towards the intersection 
line with the A1A2 plane. 

A simple graphical construction, the Fresnel construc- 
tion, exists for the direction of the principal axes of the 
sectional ellipse. This construction is described in 
Wahlstrom (1951, p. 232) and Lisle (1976). For a given 
orientation of the ellipsoid and section plane, the Fresnel 
graphical construction allows calculation of the orien- 
tation of the axis of the sectional ellipse if the angle V of 
the ellipsoid is known. The latter can be calculated from 
the reciprocal quadratic elongations (A' = l/A) 

tan 2 V =  A ~ -  A~ (1) 
A ' -  

or from the axial ratios of the strain ellipsoid, a = 
(A1/A2) lj2 and b = (AE/A3) 1/2 

a2(b 2 -  1) (2) 
tan 2 V = a 2 - l 

from Flinn (1962). 
Equations for the orientation of the principal axes of 

the sectional ellipse have been given recently by a 
number of authors (Ramberg 1976, Ferguson 1979, Fry 
1979, Gendzwill & Stauffer 1981, Treagus & Treagus 
1981). These equations allow the calculation of the pitch 
of the long axis of the ellipse produced by sectioning an 
ellipsoid of known axial lengths on a plane of known 
orientation with respect to the principal axes of the 
ellipsoid. However, the existence of the Fresnel con- 
struction implies that a knowledge of the individual 
lengths of the ellipsoid axes is unnecessary for this 
purpose. The required relationship can be derived from 
the equations of Treagus & Treagus (1981, appendix II, 
eqns 18, 19 and 25). Consider an inclined plane (Fig. 1) 
whose orientation relative to the principal axes of the 
strain ellipsoid is given by strike (a) and dip (/3). Treagus 
& Treagus (1981, eqn 25) showed that the pitch (0) of 
the long axis of the sectional strain ellipse is given by 

tan 20 = 2(A~ - A~)sin a(1 - sin 2 a) 1/2 
, , , ( 3 )  

A D -- A S 

where hA and A~-, the reciprocal quadratic elongations 
of lines within the plane parallel to the lines of dip and 
strike, respectively, are calculated from eqns 18 and 19 
of Treagus & Treagus (1981) 

A~ = (1 - sin 2 c~)A~ + sin 2 aA~ (4) 

A~ = sin 2/3A~ + sin 2 a(1 - sin 2/3)A~ 
+ (1 - sin 2 a)(1 - sin z/3)A~. (5) 

Substitution for A A and A,~ in eqn (3) and inverting yields 

(A] - A~)sin 2/3 + 
cot 20 = (A~ - A~)(1 - 2 sin 2 ~ + sin 2 ~ sin 2/3) 

2(A~ - A~)sin a(1 - sin 2 a) 

A3 

Fig. 1. The angles used to describe the orientation, in the deformed 
state of the strain ellipse on a plane inclined to the principal axes of the 

strain ellipsoid. See text for details. 

which, after combination with (1) and some manipu- 
lation, is 

sin 2a 
tan 20 = (6) 

cos 2a - sin -~/3 (cot 2 V + cos 2 a) 

In this equation the V value of the ellipsoid alone allows 
the orientation of the sectional ellipse to be calculated 
for a plane of given orientation. 

PROGRESSIVE DEFORMATION AND TWO 
TYPES OF SECTIONAL STRAIN 

I will consider below the behaviour of the sectional 
strain ellipse on a fixed plane in a rock undergoing a 
three-dimensional coaxial strain history. Before this can 
be done we must analyse more closely what is meant by 
'fixed plane'. Two meanings suggest themselves. In the 
first, the plane is fixed in orientation with respect to the 
axes of the strain ellipsoid. In the other, the plane is fixed 
in position within the material. The latter can be referred 
to as a 'material plane'. 

Sectional strain on a plane fixed in orientation with respect 
to the axes o f  the strain ellipsoid 

The orientation of the strain ellipse on this type of 
fixed plane will change in a way governed by the way the 
V parameter of the ellipsoid changes during the strain 
history. A Flinn diagram like that shown in Fig. 2 can be 
used to represent strain paths which record the progress- 
ive changes of axial ratios undergone by the strain 
ellipsoid during the strain history. Also shown on Fig. 2 
are V curves; that is curves linking all ellipsoids which 
share the same value of V. Clearly, if a strain path 
proceeds along such a V curve, the sectional ellipse will 
retain a constant orientation with respect to the principal 
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Fig. 2. Flinn graph (a = (A]/A2) 1/-~, b = (A2/A3) I/2) showing curves of 
constant  V for the strain ellipsoid (dashed lines) and curves of constant 

V for the reciprocal strain ellipsoid (solid lines). 

axes of the strain ellipsoid (the sectional strain can be 
referred to as irrotational). All other strain paths will 
intersect the V curves and yield rotational strain ellipse 
histories. Because it is difficult to envisage a geological 
situation in which such a two-dimensional strain history 
could be observed we will proceed to our second type of 
sectional strain. 

Sectional strain on a material plane 

The section plane considered here in general rotates 
with respect to the principal axes of the strain ellipsoid so 
the V parameter  of the strain ellipsoids during defor- 
mation tells us little about the state of strain on this 
section plane (i.e. the angles cr and/3 in eqn 6 change 
during deformation). Instead, reference to the recipro- 
cal strain ellipsoid and its corresponding V parameter  
proves to be more useful. 

The reciprocal strain ellipsoid (e.g. Jaeger 1962) can 
be thought of as the shape before deformation which 
deforms homogeneously to give a sphere. As such, it is a 
description of the strain referred to the undeformed 
state. The reciprocal strain ellipse, a section through the 
reciprocal strain ellipsoid, portrays inversely the vari- 
able extensions to be suffered by lines within that plane. 
For example, the material line coinciding with the short 
axis of the reciprocal strain ellipse will be the same 
material line which is parallel to the long axis of the 
strain ellipse on the deformed plane. 

The V value of the reciprocal strain ellipsoid, which 
we denote V*, allows us to calculate, for a material plane 
in the undeformed state, the material line which is to 
become the line with maximum elongation in that 
material plane, in the deformed state. Clearly, if, during 
the progressive deformation, the reciprocal strain ellip- 
soid retains the same V* value then it is the same 
material line in the undeformed state which becomes at 
every stage in the deformation history the long axis of 
the strain ellipse in that material plane in the deformed 
state. Such a deformation history (a V* strain path) 
leads therefore to a coaxial sectional strain history for all 

material planes. Figure 3 illustrates a coaxial sectional 
strain history. Using symbols with an asterisk for the 
reciprocal strain ellipsoid we have 

A~* = A3 
A~* = A2 
hi* = & 

a * = b  
b * = a  

and, substituting into eqn (1), V* (for the reciprocal 
strain ellipsoid) becomes 

tan 2V* - Al - A2 _ bZ(a 2 -  1) (7) 
A 2 - A 3 b 2 - 1 

Lines of constant V* are shown in Fig. 2. These curves 
allow us to decide if a plotted strain path will give rise to 
coaxial or non-coaxial sectional strain. Strain paths 
which intersect the constant V* curves will produce 
sectional non-coaxial strains whilst strain paths following 
these curves will correspond to coaxial sectional strain 
histories. It becomes apparent that coaxial strain in a 
two-dimensional as well as a three-dimensional sense is 
a very special type of strain history. 

The important deduction that the strain will be coaxial 
when the strain path follows a V* curve on the Flinn 
diagram is demonstrated mathematically below with 
reference to the shape characteristics of the finite and 
infinitesimal strain ellipsoids during a coaxial strain 
increment. 

INFINITESIMAL AND FINITE STRAIN 
ELLIPSOIDS 

By definition a coaxial strain history requires that the 
axes of the principal axes of the ellipsoid representing 
the last small increment of strain (the infinitesimal strain 
ellipsoid) must be parallel to the axes of the ellipsoid 
recording the total accumulated strains (the finite strain 
ellipsoid). Since this paper discusses only three-dimen- 
sional strain histories which are of a coaxial type, this 
condition must apply here. 

It has been reasoned in the previous section that the 
two-dimensional strain histories of all planes through 
the deforming rock will be coaxial if the strain path is 
such that V* retains a constant value. When this is the 



812 R . J .  LISLE 

I 

i 

2 , 

strain path: a =  ( t a n 2 V  ° -  

/ ' ~ " J ~ J ~  d a a 2- 1 

slope: - -  = 
d b  a b ( b  2 - 1 )  

tan 2 V'+t))2 
b 

1 

v ~ - - T 3  5 v4 57 
b 

Fig. 4. A V* strain path. 

case, the principal axes of the finite strain ellipse must be 
parallel to those of the infinitesimal strain ellipse. Con- 
sidering a given plane of strike a and dip/3, the pitches of 
the long axes of these ellipses (Of, 0i) are given by (6). It 
would appear then from eqn (6) that under these condi- 
tions, Vi = Vf. This is proved below. 

From (7), the equation of the V* strain path (Fig. 4) 
can be found to be 

a = (tan2 v ,  tan2 V ,  )~J2 - ~ + 1 (8) 

and its slope :( a21 
a~--(b~- _- 1))v" . (9) 

The slope of any strain path on the Flinn plot can be 
shown to be related to the k value (k = (a - 1)/(b - 1)) 
of the infinitesimal strain (ki) at that point on the path by 
the equation 

da _ ki a (10) 
db b" 

Combining (9) and (10) gives 

f a2- ) (ki)v* = a2(b 2 -  1) v*" (11) 

For the infinitesimal strain ellipsoid the k value and 1/ 
angle are simply related (Flinn 1962, p. 389). The 
equation relating them is derived from (2) considering 
the condition of small strains (ab approaches unity, b --~ 
1/a) 

tan 2 Vi - 1 (12) 
ki 

which, when combined with (11), gives 

(a2(b2 - 1))  
tan 2 (Vi)v* = -~--- -1 v*" (13) 

But from (2) 

a2(b 2 -  1) (14) 
tan 2 V f =  -~---'1 " 

Thus it is proved, that under conditions of constant V*, 

40~ / 

1. 
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Fig. 5. Strain paths in relation to V curves. A, B and C are strain path 
segments with various slopes with respect to the slope of the V* curves. 
A will give rise to a coaxial strain increment, B and C to positive and 
negative non-coaxial, respectively. D is a complex strain path and 

involves increments of the types A, B and C. 

E = v f  

and hence the sectional strain history is of coaxial type. 
Figure 2 shows that the V value of the finite ellipsoid 

following a V* path must constantly increase as the 
strain magnitude increases. To maintain its course on a 
V* path, the infinitesimal strains must therefore change 
their V values continuously to keep pace with the V of 
the finite strain ellipsoid. A non-coaxial sectional strain 
history results when the strain path deviates from a V* 
path implying an inequality between the V values of the 
infinitesimal and finite strain ellipsoid. 

Figure 5 shows portions of three strain paths. If the 
slope of the strain path is parallel to the V* curves (path 
A) an increment has been coaxially added to the sec- 
tional strain ellipse. Strain path B in Fig. 5 has a steeper 
slope than the V* curve which means that Vi < (Vi)v*. 
Also, Vi < (Vf)v, because (Vi)v* = (Vf)v,. The super- 
imposed increments in other words are more prolate 
than the finite strain and the orientation of the long axis 
of the incremental ellipse lies closer to the orthogonal 
projection of the A1 axis on the considered plane than 
does the long axis of the finite strain ellipse. I define this 
sense of non-coaxiality as positive. The terms positive 
and negative non-coaxiality are illustrated in Fig. 6. Path 
C (Fig. 5) with a lower slope than the intersecting V* 
curve will give rise to a negative non-coaxiality. 

THE S E C T I O N A L  S T R A I N  H I S T O R Y  
A S S O C I A T E D  W I T H  THE S I M P L E S T  

OF S T R A I N  PATHS 

On the basis of an observed strain path, we are now in 
a position to deduce the presence and its sense of 
non-coaxiality in the section strain history. I consider 
now a specific example. The simplest coaxial strain path 
arising from the superimposition of identical strain incre- 
ments leads to strain path of constant K, where K = In 
a/ln b (Ramsay 1967, p. 329). As can be seen in Fig. 7, K 
strain paths always possess a steeper slope than V* 
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Fig. 6. (a) Non-coaxial section strain of a positive sense where the finite strain ellipse is oriented closer to the A1A 2 plane trace 
than the ellipse representing the last strain increment. (b) Negative non-coaxiality is where the incremental strain ellipse is 

closer to the A1A 2 plane trace than the finite strain ellipse. 

curves. This means, for the reasons explained in the 
previous section, that the sectional non-coaxiality of 
non-principal planes will be positive. The sense of non- 
coaxiality undergoes no reversals but remains positive 
throughout the deformation history. 

THE MAXIMUM LIMIT ON THE SECTIONAL 
NON-COAXIALITY DURING A 

THREE-DIMENSIONAL COAXIAL 
STRAIN HISTORY 

The measure of non-coaxiality used in this discussion 
is an instantaneous one defined by angular deviation 
between the finite strain ellipse and the incremental 
strain ellipse at that instant (see Elliott 1972 and Means 
et al. 1980 for other measures of non-coaxiality). The 
amount of non-coaxiality, expressed as the angle (0t, - 
0i), is a function of the attitude of the section plane with 
respect to the three principal axes of the strain ellipsoid 
and also of the angles Vi and Vf. It can be evaluated by 
means of eqn (6) noting, in relation to the strain path in 
Flinn space (a = function (b)) ,  that 

II ~L 

41 ~ //// ' . ~  " " " 

]1 

J 

J 

J , 6 

3. 5 4 J / fl"~ 

2. 5 J /' , ~ ~ - - ~ , . 0  5 

- - K = O  25  

b 

Fig. 7. Flinn diagram comparing the shape of K curves with V curves. 
Simple strain paths of constant K will be characterized by positive 
non-coaxiality of the sectional strain because of the steeper gradient of 

the K-curves compared with the V* curves. 

da b a 2 -  1 
cot 2V~ . . . .  and cot 2V r =  

db a a 2 ( b 2 -  1) 

An upper limit is placed on the amount of non-coaxial- 
ity by the fact that this angle of obliquity between the 
ellipses can never exceed the angle between the traces of 
the hi) ,  2 plane and the projection of the A1 axis on the 
section plane. The value of this maximum limit therefore 
depends strongly on the inclination of the plane to the 
principal axes of the strain ellipsoid. Figure 8 illustrates 
how the plane's orientation constrains the maximum 
permissible angular non-coaxiality. Planes parallel to 
the principal axes, for instance, can never show non- 
coaxiality. Marked non-coaxiality results when the nor- 
mal to the plane lies close to the AIA 3 plane (i.e. when the 
plane lies close to A2 axis of the strain ellipsoid). These 
established theoretical limits on the amount of non- 
coaxiality can be exceeded only if, at a given point, the 
directions of A~, h 2 and h 3 of the infinitesimal strain 
ellipsoid become interchanged. 

/t2 

/13 

Y 

Fig. 8. Stereographic projection showing how y, the angle in the 
section between the trace of the AIA 2 plane and the orthogonal 
projection of At, varies as a function of the plane orientation. The 
lower right quadrant shows how the magnitude of yvaries as a function 

of the orientation of the normal to the section plane. 
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GEOLOGICAL PHENOMENA RELATED TO THE 
NON-COAXIALITY OF SECTIONAL STRAIN 

Models for the rotation of fold axes during progressive 
deformation 

Ramberg (1959) and Flinn (1962) have made the 
suggestion that embryonic folds that develop in a layer 
oblique to the principal axes of the strain will have axes 
perpendicular to the direction of maximum finite short- 
ening within that layer. 

Two theories exist for the subsequent rotational 
behaviour of the fold axes. Flinn (1962), Sanderson 
(1973) and Ramsay (1979) considered that folds rotate 
during continued strain as passive (material) lines 
whereas Osberg (1975), Stringer & Treagus (1980) and 
Treagus & Treagus (1981) envisaged that folds rotate so 
as to remain perpendicular to the direction of maximum 
finite shortening within the folding sheet. 

The relationship between these two models of hinge 
rotation has clearly to do with the non-coaxiality of the 
sectional strain. The models become equivalent when 
the three-dimensional strain history is one of the special 
cases discussed above which produces a coaxial sectional 
strain history. The second model mentioned above does 
not therefore necessarily imply that fold axes always 
behave as non-material lines. Treagus & Treagus (1981) 
did not recognize this since they considered only con- 
stant-K strain paths. 

Folds rotating in the manner proposed in the second 
model will rotate towards the ,~1 direction at a rate faster 
than that of a material line in the case of a positive 
non-coaxiality and slower than a material line when the 
non-coaxiality of the sectional strain is negative. Non- 
coaxiality will lead to hinge migration with respect to 
material points in the folding layer. The non-coaxiality 
of the strain within a sheet undergoing folding could 
result in an asymmetrical arrangement of structures 
within the sheet (Fig. 9). It has been suggested that en 
6chelon folds (Ramsay 1967, p. 177, Treagus & Treagus 
1981) and folds with transecting cleavage (Borradaile 
1978, Stringer & Treagus 1980, Treagus & Treagus 
1981) are possible products of this asymmetry and that 
they may provide evidence of the sense of non-coaxiality 
of the strain history in the plane of the folding sheet. 

Structures related to incremental extensions 

:.~ (a)R~';~ ''- " ~  '' (:':' ~- , ,  ~ z  -. " (hi 

I t 
Fig. 9. Summary diagram of structures produced by sectional coaxial 
(a and c) and non-coaxial (b, d and e) strain. (a) and (b) represent 
folding while (c), (d) and (e) show extension-vein structures. Finite (f) 

and incremental (i) strain ellipses are shown. 

explained in terms of the strain path and its relation to 
the V* paths. For instance the presence of inflection 
points in curved fibres might indicate a stage in the 
sectional strain history corresponding to a coaxial sec- 
tional increment which marks the reversal of sense of 
sectional non-coaxiality [Figs. 5 (path D), 9 and 10]. 
Along a constant-K strain path curved fibres will be 
produced though inflections will not arise because the 
sense of non-coaxiality remains constant (and positive) 
throughout. 

CONCLUSIONS 

This paper emphasizes that coaxial strain in a three- 
dimensional sense is not necessarily accompanied by 
coaxial strain on planar sections through the rock. In 
fact, non-coaxial sectional strain is to be expected as a 
general outcome of three-dimensional coaxial strains. 
Conversely, some three-dimensional strain histories 
such as simple shear do not automatically give rise to 
non-coaxial sectional strains. These relationships are 
summarized in Table 1. 

Ramsay (1967), Elliott & Wickham (1970) and Dur- 
hey & Ramsay (1973) have interpreted the curved pat- 
tern shown by crystals of fibrous habit present in veins or 
separation zones between boudins in terms of the incre- 
mental history of dilation. The discussion above leads us 
to conclude that the changing direction of maximum 
extension indicated by curved fibres in two dimensions 
does not necessarily imply a non-coaxial strain in three 
dimensions, but should also be a common feature of 
three-dimensional coaxial history where the structure is 
developed in extending layers oblique to the principal 
axes of the ellipsoid. 

Complexities in the shape of these fibres might be 

Table 1. Summary scheme: coaxial and non-coaxial strain in two- and 
three-dimensions 

Sectional strain history 
Coaxial Non-coaxial 

3-D Coaxial Special. Requires General situation for 
strain history specific strain path 3-D coaxial strains 

otherwise exists on 
principal planes 
only 

3-D Non-coaxial Rare but possible, The most probable 
strain history e.g. on planes situation in nature 

parallelto Azin 
simple shear strain 
history 



S e c t i o n a l  s t ra in  e l l ipse  d u r i n g  coax i a l  d e f o r m a t i o n  

Fig. 10. Curved calcite fibres in a vein, Permian Slates, Bielsa, Southern Pyrenees. The presence of an inflection point can 
be used to indicate a strongly curved strain path as shown in Fig. 5 [curve D]. 
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Only if the strain path is of a rather special type will the 
strain history be truly coaxial in a two-dimensional as 
well as a three-dimensional sense. Although there is no 
reason to expect that such special strain paths are com- 
mon geologically, they are nevertheless important as 
they give rise to strains which mark the transition 
between positive and negative sectional non-coaxiality 
sense. The presence and sense of non-coaxiality estab- 
lished from incremental-strain structural indicators can 
be used to estimate the slope of the strain path at various 
stages in progressive deformation if the deformation is 
coaxial in three dimensions. In general, pronounced 
sectional non-coaxiality will result from strong curva- 
tures of the strain path. 

Finally, it should be emphasized that this discussion 
has been totally restricted to the case of three-dimen- 
sional strain histories which are coaxial. The sectional 
coaxial character of such histories is in general observ- 
able only on planes containing a principal axis of the 
finite strain ellipsoid. Caution should be exercised 
before conclusions are drawn concerning the non- 
coaxiality of three-dimensional strain from observations 
of structures visible on non-principal planes through the 
deformed rock. 
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